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Abstract

We describe a single step, second-order accurate Godunov scheme for ideal MHD based on combining the piecewise

parabolic method (PPM) for performing spatial reconstruction, the corner transport upwind (CTU) method of Colella

for multidimensional integration, and the constrained transport (CT) algorithm for preserving the divergence-free

constraint on the magnetic field. We adopt the most compact form of CT, which requires the field be represented by

area-averages at cell faces. We demonstrate that the fluxes of the area-averaged field used by CT can be made consistent

with the fluxes of the volume-averaged field returned by a Riemann solver if they obey certain simple relationships. We

use these relationships to derive new algorithms for constructing the CT fluxes at grid cell corners which reduce exactly

to the equivalent one-dimensional solver for plane-parallel, grid-aligned flow. We show that the PPM reconstruction

algorithm must include multidimensional terms for MHD, and we describe a number of important extensions that must

be made to CTU in order for it to be used for MHD with CT. We present the results of a variety of test problems to

demonstrate the method is accurate and robust.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

In recent years a variety of numerical algorithms for multidimensional magnetohydrodynamics (MHD)

based on Godunov�s method have been developed [3,9,10,16,23,25,28]. There are two important extensions

to the basic hydrodynamical algorithm that are required for MHD. The first is an extension of the Riemann

solver used to compute the fluxes of each conserved quantity to MHD; the second is a method by which the
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divergence-free constraint $ Æ B = 0 is imposed upon the numerically evolved magnetic field. Of the two, the

latter has emerged as the more difficult to achieve.

The fact that it is important to ensure the numerically evolved field satisfies the divergence-free

constraint was first noted by Brackbill and Barnes [4]. They pointed out that the Lorentz force is not

orthogonal to B if $ Æ B 6¼ 0, and that this could lead to incorrect dynamics in a well defined test problem.
More recently Tóth [32] has shown that in some circumstances it is possible to get the wrong jump condi-

tions across MHD shocks if the constraint is not satisfied (this is also evident in the method of [16]).

Currently, there are three methods by which the divergence-free constraint is applied in Godunov

schemes. The first is to use a Hodge projection to clean the magnetic field of any divergence after each time

step (e.g. [2,9,32]). The second is to extend the system of conservation laws with an evolutionary equation

for the divergence designed to minimize the accumulation of error in any one location. Examples of this

approach include the eight-wave scheme [26] and the GLM-MHD scheme [12]. Finally, the third is to de-

sign the difference equations for the magnetic field to explicitly conserve magnetic flux, and so preserve the
divergence-free constraint. The latter method termed constrained transport (CT) by [15] has proved suc-

cessfull in other MHD algorithms [6,31] and is the method adopted here.

The most compact CT difference formulae are built upon area-averaged magnetic field components lo-

cated at the faces of a grid cell, rather than volume-averaged field components located at grid cell centers

(CT algorithms built upon cell-centered fields have been developed in [32], however they require averaging

over a stencil which is larger than that used to compute the fluxes). The need for a staggered grid is often

thought of as a disadvantage of CT. In fact, however, it reflects one of the most attractive properties of CT:

the fundamental conserved property of the magnetic field in MHD is the magnetic flux (which is an area-
rather than volume-average) and by design, CT conserves the magnetic flux (and therefore it preserves the

divergence-free character of the magnetic field) in an integral sense, over the smallest discretization scale,

the grid cell size.

We would like to combine CT with a finite volume shock capturing method. It may at first seem incon-

sistent to build a numerical algorithm which mixes a finite volume approach (which conserves integrals of

volume-averaged values) with CT (which conserves integrals of area-averaged magnetic fluxes at grid cell

faces). In this paper we show that, provided the fluxes of the volume- and area-averaged fields obey certain

simple relationships, the finite-volume and CT approaches can be made consistent (see also [23]). Most
importantly, the relationships we derive allow us to develop algorithms for constructing fluxes of the

face-centered field (located at grid cell corners in 2D) from the fluxes of the volume-averaged field com-

puted by a Riemann solver (located at grid cell faces). We demonstrate that multidimensional algorithms

developed in this way reduce exactly to the equivalent one-dimensional solver for plane-parallel, grid-

aligned flow. This is one difference between the methods developed here and previous implementations

of CT in Godunov schemes [3,11,28].

We combine the CT algorithms developed in this paper with the piecewise parabolic method (PPM) [8]

using Roe�s linearization as the MHD Riemann solver [5]. An essential ingredient of PPM is a spatial recon-
struction step to compute time-advanced estimates of the conserved variables at grid faces. In this paper we

show that for MHD, this reconstruction step must include multidimensional terms in the induction equa-

tion (used to reconstruct the transverse components of the field). We argue that dimensionally split MHD

algorithms cannot preserve the divergence-free constraint between each one-dimensional update, therefore

we adopt the unsplit corner transport upwind (CTU) algorithm of Colella [7] to develop a multidimensional

algorithm. However, there are a number of important extensions that must be made to CTU to make it

suitable for MHD with CT. These include using a CT update for the magnetic field during the predict step,

and inclusion of multidimensional terms along with the transverse flux gradients used to predict multidi-
mensional fluxes. We describe these extensions in detail.

The resulting two-dimensional MHD PPM algorithm uses a single step update, is second order accurate,

and is fully conservative. Hence it is ideally suited for use on a statically or adaptively refined mesh. More-



T.A. Gardiner, J.M. Stone / Journal of Computational Physics 205 (2005) 509–539 511
over, the two-dimensional algorithm reduces exactly to the base one-dimensional algorithm for planar,

grid-aligned flows. Although this paper will only describe the combination of CT with CTU, there is no

reason why the CT algorithm described here could not be combined with other unsplit methods. To sim-

plify the discussion we confine ourselves to a two-dimensional algorithm in this paper.

The paper is organized as follows. In Section 2, we review the finite volume and CT methods in order to
demonstrate the relationships between the area- and volume-averaged magnetic fields and their fluxes. In

Section 3.3, we use these relationships to derive algorithms for constructing the fluxes of face-centered

area-averaged fields needed by CT from the fluxes of cell-centered volume-averaged fields returned by a

Riemann solver. We present a single step first-order Godunov method and use it to test different algorithms

for constructing the fluxes used in CT. This method forms the first half of the second-order CTU + CT inte-

gration algorithm developed in Section 4. In Section 5, we present a variety of tests which demonstrate the

linear and nonlinear behavior of the scheme. Finally, in Section 6 we conclude.
2. Constrained transport in finite volume schemes

The equations of ideal magnetohydrodynamics (MHD) can be written in conservative form as
oq
ot

þr � ðqvÞ ¼ 0; ð1Þ

oqv
ot

þr � qvv� BBð Þ þ rP � ¼ 0; ð2Þ

oB

ot
þr � vB� Bvð Þ ¼ 0; ð3Þ

oE
ot

þr � ððE þ P �Þv� BðB � vÞÞ ¼ 0; ð4Þ
where q is the mass density, qv is the momentum density, B is the magnetic field, and E is the total energy

density. The total pressure P* ” P + (B Æ B)/2, where P is the gas pressure and the total energy density E is

related to the internal energy density � via
E � �þ qðv � vÞ
2

þ ðB � BÞ
2

: ð5Þ
Throughout this paper we will assume an ideal gas equation of state for which P = (c � 1)�, where c is the
ratio of specific heats. Unless otherwise stated, we take c = 5/3. None of the main results described in this

paper depend directly upon the equation of state. Note also that we have chosen a system of units in which

the magnetic permeability l = 1.

In addition to the evolutionary conservation laws (Eqs. (1)–(4)), the magnetic field must also obey the
divergence-free constraint, i.e. $ Æ B = 0. It is of paramount importance that the numerically evolved field

satisfy this constraint at all times, otherwise, for example, the system of equations for the conservative vari-

ables is inconsistent with the same system written in terms of the primitive variables, i.e. (q, v, B, P).
The algorithm described in this paper is built upon finite volume (FV) methods, in which the

conserved variables are averaged over grid cell volumes. On the other hand, the CT method is built upon

area-averaging of the magnetic field, leading to difference equations for the magnetic flux through the

surfaces of grid cells. In the following subsections, we briefly review the FV and CT schemes in order

to arrive at consistent relationships between the volume- and area-averaged magnetic field and their asso-
ciated numerical fluxes.
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2.1. Finite volume method

Consider a regular, two-dimensional Cartesian grid with grid cell (i,j) centered at (xi,yj) and of size

(dx,dy). The conservative system of equations for ideal MHD can be written in vector form as
oq
ot

þr � f ¼ 0; ð6Þ
where 0 1
q �

q

qvx
qvy
qvz
Bx

By

Bz

E

BBBBBBBBBBBBB@

CCCCCCCCCCCCCA
ð7Þ
is the vector of conserved variables and
fx �

qvx
qv2x þ P � � B2

x

qvxvy � BxBy

qvxvz � BxBz

0

vxBy � Bxvy
vxBz � Bxvz

ðE þ P �Þvx � BxðB � vÞ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; f y �

qvy
qvyvx � ByBx

qv2y þ P � � B2
y

qvyvz � ByBz

vyBx � Byvx
0

vyBz � Byvz
ðE þ P �Þvy � ByðB � vÞ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð8Þ
are the flux vectors. Integrating over the volume of grid cell (i,j) and the time interval dt = tn + 1 � tn and

applying Gauss�s theorem we obtain
qnþ1
i;j ¼ qni;j þ

dt
dx

F nþ1=2
x;i�1=2;j � F nþ1=2

x;iþ1=2;j

� �
þ dt
dy

F nþ1=2
y;i;j�1=2 � F nþ1=2

y;i;jþ1=2

� �
ð9Þ
the integral form of the evolution equation. The conserved quantities
qni;j �
1

dxdy

Z yiþdy=2

yi�dy=2

Z xiþdx=2

xi�dx=2
qðx; y; tnÞ dx dy ð10Þ
are averaged over the grid cell volume and the fluxes
F nþ1=2
x;i�1=2;j �

1

dydt

Z tnþ1

tn

Z yiþdy=2

yi�dy=2
fxðxi � dx=2; y; tÞ dy dt; ð11Þ

F nþ1=2
y;i;j�1=2 �

1

dxdt

Z tnþ1

tn

Z xiþdx=2

xi�dx=2
fyðx; yi � dy=2; tÞ dx dt ð12Þ
are averaged over the surface area of a grid cell face and the time interval dt. Typically, one approximates

the flux integrals in Eqs. (11) and (12) to some order of accuracy, while maintaining strict conservation by
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evolving the conserved quantities through Eq. (9). Note when written in this form, the components of the

flux vectors are non-zero for the transverse components of the magnetic field only, meaning that direction-

ally split updates of the volume averaged field based on these fluxes will not generally satisfy the divergence-

free constraint between directional sweeps. This suggests directionally split algorithms are inappropriate for

MHD.

2.2. Constrained transport method

In the CT method, the integral form of the induction equation is based on area rather then volume aver-

ages. Starting from the differential form of the induction equation,
oB

ot
þr� E ¼ 0; ð13Þ
where the electric field E ¼ �v� B in ideal MHD, one may integrate over the bounding surface of a grid

cell and use Stoke�s theorem to obtain
Bnþ1
x;i�1=2;j ¼ Bn

x;i�1=2;j þ
dt
dy

E
nþ1=2
z;i�1=2;j�1=2 � E

nþ1=2
z;i�1=2;jþ1=2

� �
; ð14Þ

Bnþ1
y;i;j�1=2 ¼ Bn

y;i;j�1=2 �
dt
dx

E
nþ1=2
z;i�1=2;j�1=2 � E

nþ1=2
z;iþ1=2;j�1=2

� �
ð15Þ
as the integral form of the evolution equation. The magnetic field components
Bn
x;i�1=2;j �

1

dy

Z yiþdy=2

yi�dy=2
Bxðxi � dx=2; y; tnÞ dy; ð16Þ

Bn
y;i;j�1=2 �

1

dx

Z xiþdx=2

xi�dx=2
Byðx; yi � dy=2; tnÞ dx ð17Þ
are averaged over the grid cell bounding faces and
E
nþ1=2
z;i�1=2;j�1=2 �

1

dt

Z tnþ1

tn
Ezðxi � dx=2; yi � dy=2; tÞ dt ð18Þ
is averaged over the time interval dt. Note the fundamental representation of the magnetic field is an area-

average at cell faces. Although CT-like difference formulae are possible based on volume averaged fields at

cell centers [32], they preserve a discretization of the divergence on a different (larger) stencil than used to

compute the fluxes.

Just as in finite volume methods, one typically approximates the electric field (flux) integral in Eq.

(18) to some order of accuracy and applies Eqs. (14) and (15) to evolve the magnetic field components

in time. Nevertheless, in a manner exactly analogous to the finite volume method, conservation of mag-
netic flux is strictly enforced, implying that the net magnetic charge interior to a grid cell vanishes at

time tn + 1 if it did so at time tn. As such, the preservation of $ Æ B = 0 (in an integral sense) in the

CT method is as fundamental as, e.g., the conservation of mass in a finite volume method. Moreover,

in the CT approach, the magnetic field components are averaged over the smallest dimensional volume

necessary so as to transform the differential equation into its integral form. In this way one maintains

the maximal ‘‘point-wise’’ information possible, thereby minimizing the dissipation inherent in the aver-

aging process.
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2.3. Consistency of the CT and FV methods

To build a numerical scheme based on the CT method for the magnetic flux, and a FV method for the

remaining conserved quantities, it is very important that the surface and volume averaged magnetic field

components (and their fluxes) be coupled in a consistent manner. One common approach [3,11,28] (which
we also follow) is to define the volume-averaged magnetic field components at cell centers as equal to the

average of the area-averaged values at cell faces, i.e.
Bn
x;i;j ¼

1

2
Bn
x;i�1=2;j þ Bn

x;iþ1=2;j

� �
; ð19Þ

Bn
y;i;j ¼

1

2
Bn
y;i;j�1=2 þ Bn

y;i;jþ1=2

� �
; ð20Þ
which is sufficient for second order accuracy. However, as shown below this choice implies a specific rela-

tionship between the numerical fluxes for the induction equation as integrated in the CT and FV

formulations.

The expressions which describe the coupling of the fluxes in the CT and FV methods are a direct result of

requiring that Eqs. (19) and (20) also hold at time tn + 1. Subtracting Eq. (19) from an equivalent expression

at time tn + 1, and substituting Eqs. (9) and (14) for the time differences of the volume- and area-averaged

magnetic field, respectively, we find
êBx � F nþ1=2
y;i;j�1=2 � F nþ1=2

y;i;jþ1=2

� �
¼ 1

2
E

nþ1=2
z;i�1=2;j�1=2 � E

nþ1=2
z;i�1=2;jþ1=2

� �
þ 1

2
E

nþ1=2
z;iþ1=2;j�1=2 � E

nþ1=2
z;iþ1=2;jþ1=2

� �
; ð21Þ
where êBx is a unit vector for the Bx component of the flux vector. It follows that
êBx � F
nþ1=2
y;i;j�1=2 ¼

1

2
E

nþ1=2
z;i�1=2;j�1=2 þ E

nþ1=2
z;iþ1=2;j�1=2

� �
; ð22Þ
which is consistent with the observation that the flux averages used in the finite volume method (Eq. (12))

are spatial averages of the electric fields used in the constrained transport method (Eq. (18)). Repeating this

analysis for By we find
êBy � F
nþ1=2

x;i�1=2;j ¼
�1

2
E

nþ1=2

z;i�1=2;j�1=2 þ E
nþ1=2

z;i�1=2;jþ1=2

� �
; ð23Þ
where êBy is a unit vector for the By component of the flux vector. Functionally, Eqs. (22) and (23) imply
that one must replace the Godunov fluxes for the volume averaged x- and y-components of the magnetic

field with the average of the corner centered Ez, regardless of the details of the CT algorithm used to com-

pute the latter. Thus, Eqs. (22) and (23) can be thought of as a corrector step that makes the predicted

Godunov fluxes given by the Riemann solver consistent with the CT fluxes. Clearly, the CT algorithm used

to compute the corner centered Ez will directly impact the accuracy and stability of the underlying Godunov

scheme; in Section 3.2 we address the problem of constructing CT algorithms and the properties they

should possess.
3. First order CT Godunov scheme

In this section we will construct and test a single step, two dimensional, first order integration algorithm

based upon the PPM. The simplicity of this algorithm allows us to develop and test two of the most impor-

tant elements of this paper: the calculation of the interface states in MHD and the systematic construction

of CT algorithms. Moreover, the resulting algorithm (apart from the update step) is essentially the first half

of the CTU + CT integration algorithm described in Section 4.
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In Section 3.1 we describe the calculation of the interface states in the PPM algorithm for the system of

ideal MHD. This interface state calculation involves a characteristic evolution of a dimensionally split sys-

tem. In this step we will find the appearance of truly multidimensional terms in the induction equation

which are proportional to oBx/ox and oBy/oy. When these terms are included in the dimensionally split, lin-

earized system of equations which are used to perform the characteristic evolution, they take the appear-
ance of ‘‘source terms’’. We present two gedanken experiments which show that these multidimensional

terms are essential to accurately predicting the time evolution in the interface states.

In Section 3.2 we address the question of the consistency of the CT algorithm with the underlying finite

volume integration algorithm. Repeating the arguments which lead to Eqs. (22) and (23), we present an

example of a CT algorithm which has insufficient dissipation and fails to reduce to the underlying integra-

tion algorithm for plane-parallel, grid-aligned flows. We proceed to describe a systematic approach to con-

structing a CT algorithm which can be applied with any approximate Riemann solver and reduces exactly

to the underlying finite volume integration algorithm for plane-parallel, grid-aligned flows. In Section 3.3,
we present a numerical study comparing three, surprisingly simple, CT algorithms each of which differs

only in its dissipation for truly multidimensional problems.

3.1. Calculating the interface states

The algorithms presented in this paper are built upon the PPM. For a thorough discussion of PPM or its

linear variant PLM and its implementation we refer the reader to the excellent descriptions in [8,24,29].

Roughly speaking the PPM algorithm can be broken down into three steps: spatial reconstruction, charac-
teristic evolution, and flux evaluation. The purpose of these first two steps is to calculate a one-sided estimate

of the time averaged state at the left- or right-hand sides of a particular grid cell interface. With these inter-

face states in hand, the interface flux may be calculated via either an exact or approximate Riemann solver.

The calculation of the interface states in PPM is performed in primitive variables, and is a one-dimen-

sional algorithm. However, in the two-dimensional (x,y) system of equations for ideal MHD there appear

terms proportional to oBx/ox and oBy/oy which are not present in the truly one-dimensional system. In

primitive variables, these terms only appear in the induction equation, which in component form is
oBx

ot
þ o

oy
vyBx � Byvx
� �

¼ 0; ð24Þ

oBy

ot
þ o

ox
vxBy � Bxvy
� �

¼ 0; ð25Þ

oBz

ot
þ o

ox
vxBz � Bxvzð Þ þ o

oy
vyBz � Byvz
� �

¼ 0: ð26Þ
Using the magnetic charge constraint ($ Æ B = 0) these terms can be eliminated from Eq. (26), giving
oBz

ot
þ o

ox
vxBzð Þ � Bx

ovz
ox

þ o

oy
vyBz

� �
� By

ovz
oy

¼ 0: ð27Þ
However, no such simplification can be made to Eqs. (24) and (25). It is natural to ask just how important
these terms are and what role they play in the evolution of the magnetic field. A few gedanken experiments

quickly show that they are absolutely essential, and at times are the dominant term in the equation.

Perhaps the most trivial example of a case in which these terms play an important role is for stationary

solutions. As a concrete example, consider a circularly polarized Alfvén wave oriented at some oblique

angle to the grid. One may always choose a reference frame in which the Alfvén wave is stationary. Because

the wave is oriented oblique to the grid, oBx/ox and oBy/oy are non-zero throughout the domain (except at
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extrema). In addition, for a standing Alfvén wave, the velocities are of the order of the Alfvén speed. In this

case, the term vx(oBy/oy) in Eq. (24) is not a small term and in fact, it must exactly balance the remaining

term o/oy(vyBx) � By(ovx/oy) in order to hold the stationary solution. A similar situation also holds for Eq.

(25).

As a second example, consider the simple advection of a magnetic field loop in the (x,y)-plane. Specif-
ically, let (q,P,v) = a constant with v ¼ vx̂i, Bz = 0, and a circular magnetic field loop in the (x,y)-plane of

sufficiently weak strength that b = 2P/B2 � 1. This problem is equivalent to the advection of a passive sca-

lar, the z-component of the magnetic vector potential. In this case Eqs. (24) and (25) are to a very good

approximation given by
oBx

ot
� vx

oBy

oy
¼ 0; ð28Þ

oBy

ot
þ vx

oBy

ox
¼ 0: ð29Þ
Hence it is clear that for this particular problem the term vx(oBy/oy) is not only important, but completely

controls the evolution of the x-component of the magnetic field.

We conclude that if the calculation of the interface states for multidimensional ideal MHD includes a

characteristic evolution step, it is necessary to include the influence of the inherently multidimensional

terms in the induction equation. Since PPM reconstruction includes a characteristic evolution step, we have

found the following modifications necessary for multidimensional MHD.
We will restrict the description to a single spatial grid cell index i and consider the reconstruction process

in the x-direction. We begin by calculating the primitive state vector, Vi = {q,vx,vy,vz, Bx,By,Bz,P}i and ~V i

such that V i ¼ ð~V i;Bx;iÞ, associated with qi, the vector of the cell averaged conserved variables. Next, we

apply the PPM algorithm to calculate the interface states of ~V i where the characteristic evolution step is

calculated by solving
o~V
ot

þ A
o~V
ox

¼ r; ð30Þ
where
~V ¼

q

vx
vy
vz
By

Bz

P

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; r ¼

0

0

0

0

vyðoBx=oxÞ
0

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ð31Þ

A ¼

vx q 0 0 0 0 0

0 vx 0 0 By=q Bz=q 1=q

0 0 vx 0 �Bx=q 0 0

0 0 0 vx 0 �Bx=q 0

0 By �Bx 0 vx 0 0

0 Bz 0 �Bx 0 vx 0

0 cP 0 0 0 0 vx

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð32Þ
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The matrix A is linearized about the state Vi and the source term r is taken to be a constant with the only

non-zero term evaluated as vy,i(Bx,i + 1/2 � Bx,i � 1/2)/dx. Note that Eq. (30) includes all of the terms from

Eq. (25). Denote the interface states calculated in this procedure as ~V
L

iþ1=2 and ~V
R

i�1=2 where the superscripts

(L,R) denote the left- or right-hand side of the interface to which they are adjacent. The final step is to de-

fine the primitive states V L
iþ1=2 ¼ ð~V L

iþ1=2;Bx;iþ1=2Þ and V R
i�1=2 ¼ ð~V R

i�1=2;Bx;i�1=2Þ. Note a further significant
advantage of using face-centered (staggered) fields: the interface states of the longitudinal component of

the magnetic field do not need to be reconstructed, and therefore will be continuous. Moreover, since

monotonicity constraints associated with reconstruction are not applied, extrema in the longitudinal com-

ponent of B at interfaces will be preserved.

The calculation of the y-interface states follows this same procedure, with the matrix A replaced by the

equivalent one-dimensional wave matrix for the y-direction and the source term r containing a non-zero

entry for Bx equal to vx(oBy/oy).
3.2. Constrained transport algorithms

In this section, we take up the problem of constructing CT algorithms. In order to identify the properties

of a suitable CT algorithm, it is particularly interesting to consider the limiting case of plane-parallel, grid-

aligned flows. In this limit oBx/ox = �oBy/oy = 0 so that there is no longer a difference between area and

volume averaged magnetic fields. Moreover, if for example o/ox = 0 then the correct solution to the CT

algorithm is readily obtained via symmetry, e.g. Ez;iþ1=2;jþ1=2 ¼ ðEz;i;jþ1=2 þ Ez;iþ1;jþ1=2Þ=2. When a CT algo-

rithm reduces to this, or an equivalent expression, for plane-parallel grid-aligned flows we describe it as
being consistent with the underlying integration algorithm, since in this case it will give the identical solu-

tion as the underlying integration algorithm applied to the equivalent one-dimensional problem. Further-

more, we seek to construct CT algorithms which are compatible with any approximate Riemann solver, e.g.

[5,10,14,20]. Hence, they should only depend upon the electric field in the flux vector, not on the structure of

the waves which result from the solution of the Riemann problem.
3.2.1. Arithmetic averaging

Perhaps the simplest, and most often suggested, CT algorithm is based upon averaging the face centered
electric fields obtained from the underlying integration algorithm, i.e. choose Ez;iþ1=2;jþ1=2 ¼ �Ez;iþ1=2;jþ1=2

where
�Ez;iþ1=2;jþ1=2 ¼
1

4
Ez;iþ1=2;j þ Ez;iþ1=2;jþ1 þ Ez;i;jþ1=2 þ Ez;iþ1;jþ1=2

� �
: ð33Þ
Unfortunately, this CT algorithm is not consistent with the underlying integration algorithm for plane-

parallel, grid-aligned flows. This behavior is most easily understood when the underlying finite volume

integration algorithm is unsplit.
Consider a plane-parallel, grid-aligned flow in which o/ox = 0. It follows that Ez;i;jþ1=2 ¼ Ez;iþ1;jþ1=2

and Ez;iþ1=2;j ¼ Ez;i;j. Inserting these expressions into Eq. (33) we find
�Ez;iþ1=2;jþ1=2 ¼
1

4
Ez;i;j þ Ez;i;jþ1

� �
þ 1

2
Ez;i;jþ1=2: ð34Þ
Contrast this with the correct solution, which by the assumption of planar symmetry is simply

Ez;iþ1=2;jþ1=2 ¼ Ez;i;jþ1=2. In order to assess the impact this CT algorithm has on the integration algorithm
as a whole, let the FV numerical flux Fy,i,j + 1/2 be written as
F y;i;jþ1=2 ¼
1

2
fyðqi;jÞ þ fyðqi;jþ1Þ þ Di;jþ1=2ðqi;j � qi;jþ1Þ
� �

; ð35Þ
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where Di,j + 1/2 is the viscosity-matrix [18,14]. Contracting this expression with a unit vector êBx to extract

the y-flux of Bx (remembering that fyðBxÞ ¼ Ez) we have the FV numerical electric field
Ez;i;jþ1=2 ¼
1

2
ðEz;i;j þ Ez;i;jþ1Þ þ

1

2
êBxDi;jþ1=2ðqi;j � qi;jþ1Þ: ð36Þ
Recall that, as discussed in Section 2.3, for FV + CT schemes this electric field is essentially a predictor va-

lue. To obtain the corrector value we begin by inserting the FV numerical electric field in Eq. (36) into the �E
CT algorithm in Eq. (34) giving
�Ez;iþ1=2;jþ1=2 ¼
1

2
ðEz;i;j þ Ez;i;jþ1Þ þ

1

4
êBxDi;jþ1=2ðqi;j � qi;jþ1Þ: ð37Þ
Note also that by symmetry we have �Ez;i�1=2;jþ1=2 ¼ �Ez;iþ1=2;jþ1=2. Applying Eq. (22) we obtain the corrector
value of the FV numerical electric field �Ez;i;jþ1=2 ¼ �Ez;iþ1=2;jþ1=2 given by Eq. (37). Comparing Eq. (36) and

(37) we find that the numerical viscosity is reduced by a factor of 2. Hence it is clear that with the arithmetic

average CT algorithm �E, the solution algorithm does not reduce to the underlying integration algorithm for

plane-parallel, grid-aligned flows and the stability of this approach is questionable. The failure of this sim-

ple procedure to reduce to the underlying integration algorithm for plane-parallel, grid-aligned flows can be

traced back to the lack of a directional bias in the averaging formula.

The arithmetic average CT algorithm formed the basis of an algorithm proposed by Balsara and Spicer

[3]. The need for the CT algorithm to have a directional biasing was well understood by these authors. In
their paper, they presented two switches which serve as local, multidimensional sensors for magnetosonic

shocks. The authors then applied weighting coefficients which impart a directional bias to the CT

algorithm.

However, the recognition that in Eq. (37) the viscous flux contribution to the corner value for Ez in the

CT algorithm is simply too small by a factor of two, suggests that by doubling it we could recover the proper

directional biasing. To that end we define
Êz;iþ1=2;jþ1=2 � 2�Ez;iþ1=2;jþ1=2 �
1

4
Ez;i;j þ Ez;i;jþ1 þ Ez;iþ1;j þ Ez;iþ1;jþ1

� �
; ð38Þ
which can be written out explicitly as
Êz;iþ1=2;jþ1=2 �
1

2
Ez;iþ1=2;j þ Ez;iþ1=2;jþ1 þ Ez;i;jþ1=2 þ Ez;iþ1;jþ1=2

� �
� 1

4
Ez;i;j þ Ez;i;jþ1 þ Ez;iþ1;j þ Ez;iþ1;jþ1

� �
: ð39Þ
Repeating the arguments leading to Eq. (34) using the CT algorithm defined by Eq. (39) one finds that the

resulting scheme reduces to the underlying finite volume integration algorithm for plane-parallel,

grid-aligned flows. It is not clear, however, from the ad-hoc construction described here how well such

an algorithm will behave for truly multidimensional flows.

In the following section, we describe a systematic approach to constructing a CT algorithm which by

design reverts to the underlying finite volume integration algorithm for plane-parallel, grid-aligned flows.
Two entirely new CT algorithms will be constructed based upon different approximations. We will also find

that the CT algorithm described by Eq. (39) can be understood as a limiting case of one of the CT algo-

rithms constructed in the next section. Despite the simplicity of the CT algorithms constructed in the fol-

lowing section, we will see in Section 3.3 that they behave surprisingly well on multidimensional tests.

3.2.2. Systematic construction of CT algorithms

The approach described here is based upon the observation that a CT algorithm can be thought of as the

inverse of the consistency relations given by Eqs. (22) and (23). In this sense, the CT algorithm can be
thought of as a reconstruction, or integration procedure. Note that the interface fluxes which are calculated
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as part of the base integration algorithm are midpoint values, centered spatially on the grid cell face, and

averaged temporally over the time step. This suggests that we consider the CT algorithm, which calculates a

time averaged value of Ez at the grid cell corner, to be a spatial integration procedure. For example, given a

face centered value Ez;iþ1=2;j we seek an estimate of ðoEz=oyÞiþ1=2;jþ1=4 giving one value for
Ez;iþ1=2;jþ1=2 ¼ Ez;iþ1=2;j þ
dy
2

oEz

oy

� �
iþ1=2;jþ1=4

: ð40Þ
Clearly in two dimensions, one may integrate from any one of the four nearest face centers to the corner
and generally the resulting values for Ez;iþ1=2;jþ1=2 will differ. In the CT algorithms presented here, we will use

the arithmetic average of these four values giving
Ez;iþ1=2;jþ1=2 ¼
1

4
Ez;iþ1=2;j þ Ez;iþ1=2;jþ1 þ Ez;i;jþ1=2 þ Ez;iþ1;jþ1=2

� �
þ dy

8

oEz

oy

� �
iþ1=2;jþ1=4

� oEz

oy

� �
iþ1=2;jþ3=4

 !

þ dx
8

oEz

ox

� �
iþ1=4;jþ1=2

� oEz

ox

� �
iþ3=4;jþ1=2

 !
: ð41Þ
The construction of this CT algorithm is completed by specifying a way to calculate the derivatives of Ez on

the grid cell face.

To calculate ðoEz=oxÞ and ðoEz=oyÞ at grid cell faces, we propose to use an approximate solution for the

evolution equations for (oBx/ox) and (oBy/oy). At a y-interface we differentiate the induction equation for
Bx giving
o

ot
oBx

ox

� �
þ o

oy
oEz

ox

� �
¼ 0: ð42Þ
Similarly, at an x-interface we differentiate the induction equation for By giving
o

ot
oBy

oy

� �
� o

ox
oEz

oy

� �
¼ 0: ð43Þ
Since these expression are still in conservation form it suggests that we may calculate an interface value for

ðoEz=oxÞ at y-interfaces and ðoEz=oyÞ at x-interfaces using for example an HLL or Lax–Friedrichs flux. To

evaluate these fluxes, we need estimates for the gradients of ðoEz=oxÞ; ðoEz=oyÞ, (oBx/ox) and (oBy/oy) on

either side of the interface.

For the single step, CT Godunov algorithm which we are considering in this section, we calculate these
derivatives as follows. For (oBx/ox) we difference the interface and cell center values giving
oBx

ox

� �
iþ1=4;j

¼ 2

dx
Bx;iþ1=2;j � Bx;i;j

� �
: ð44Þ
For ðoEz=oxÞ we difference the face centered Ez;iþ1=2;j which comes directly from the Riemann solver and the

cell center value Ez;i;j evaluated in the cell center state qni;j giving
oEz

ox

� �
iþ1=4;j

¼ 2

dx
Ez;iþ1=2;j � Ez;i;j

� �
: ð45Þ
The values for (oBy/oy) and ðoEz=oyÞ are given by analogous expressions.
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Pursuing the Lax–Friedrichs estimate with a maximum wave speed a we find
oEz

ox

� �
iþ1=4;jþ1=2

¼ 1

dx
Ez;iþ1=2;j � Ez;i;j þ Ez;iþ1=2;jþ1 � Ez;i;jþ1

� �
þ a
dx

Bx;iþ1=2;j � Bx;i;j � Bx;iþ1=2;jþ1 þ Bx;i;jþ1

� �
ð46Þ
and � �

oEz

oy iþ1=2;jþ1=4

¼ 1

dy
Ez;i;jþ1=2 � Ez;i;j þ Ez;iþ1;jþ1=2 � Ez;iþ1;j

� �
þ a
dy

By;iþ1;jþ1=2 � By;iþ1;j � By;i;jþ1=2 þ By;i;j

� �
: ð47Þ
Repeating this procedure for the two remaining gradients and inserting the results into Eq. (41) we obtain
Ea
z;iþ1=2;jþ1=2 ¼

1

2
Ez;i;jþ1=2 þ Ez;iþ1;jþ1=2 þ Ez;iþ1=2;j þ Ez;iþ1=2;jþ1

� �
� 1

4
Ez;i;j þ Ez;iþ1;j þ Ez;i;jþ1 þ Ez;iþ1;jþ1

� �
þ a
8

Bx;iþ1=2;j � Bx;i;j � Bx;iþ1=2;jþ1 þ Bx;i;jþ1

� �
þ a
8

Bx;iþ1=2;j � Bx;iþ1;j � Bx;iþ1=2;jþ1 þ Bx;iþ1;jþ1

� �
þ a
8

By;iþ1;jþ1=2 � By;iþ1;j � By;i;jþ1=2 þ By;i;j

� �
þ a
8

By;iþ1;jþ1=2 � By;iþ1;jþ1 � By;i;jþ1=2 þ By;i;jþ1

� �
: ð48Þ
One may readily show that for plane-parallel, grid-aligned flows, this CT algorithm will properly recover

the associated one-dimensional solution for the underlying integration algorithm. Hereafter, we refer to

Eq. (48) as the Ea
z CT algorithm.

It is particularly interesting to note that the a = 0 limit of Eq. (48) gives Eq. (39). Hence we may now

understand Eq. (39) as being equivalent to the integration and averaging procedure described here with

the approximation
oEz

oy

� �
iþ1=2;jþ1=4

¼ 1

2

oEz

oy

� �
i;jþ1=4

þ 1

2

oEz

oy

� �
iþ1;jþ1=4

: ð49Þ
Clearly this is not an upwinded approximation, suggesting that we should find some level of oscillations

present in using this CT algorithm for multidimensional flows. However, since the dissipation arising from

the terms proportional to a in the Ea
z CT algorithm are only important for truly multidimensional flows, it is

not clear if their neglect will have a substantive impact on the first order integration algorithm which we are

considering here. For that reason, henceforth we will refer to the a = 0 limit of the Ea
z CT algorithm as E�

z ,

and include it in the tests in the following section.

We now have two CT algorithms: the E�
z algorithm given by Eq. (39), and the Ea

z algorithm given by Eq.

(48). As our final CT algorithm, we note that for the special case of advection, ðoEz=oyÞ at an x-interface
should be selected in an upwind fashion according to the contact mode. As such, we suggest that upwinding

ðoEz=oyÞ at x-interfaces (and similarly ðoEz=oxÞ at y-interfaces) according to the contact mode may be

sufficient to lead to a stable, non-oscillatory integration algorithm. Specifically, we choose
oEz

oy

� �
iþ1=2;jþ1=4

¼
ðoEz=oyÞi;jþ1=4 for vx;iþ1=2;j > 0;

ðoEz=oyÞiþ1;jþ1=4 for vx;iþ1=2;j < 0;

1
2

ðoEz=oyÞi;jþ1=4 þ ðoEz=oyÞiþ1;jþ1=4

� �
otherwise:

8><
>: ð50Þ
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Note that this simply depends upon the sign of the mass flux, not the details of the solution of the Riemann

problem at the interface and therefore can be applied with any approximate or exact Riemann solver. An

analogous expression holds for the remaining three interface gradients of Ez. We will refer to the CT algo-

rithm which results from combining this approximation for the gradients of Ez with Eq. (41) as the Ec
z CT

algorithm. By design this CT algorithm reduces to the underlying integration algorithm for plane-parallel
grid-aligned flows and is properly upwinded in a multidimensional sense for the simple case of magnetic

field advection.

In this section, we have presented a simple approach to constructing a CT algorithm which reduces ex-

actly to the base integration algorithm for plane-parallel, grid-aligned flows. By design, the CT algorithms

constructed here differ only in their numerical viscosity for multidimensional problems. It should be noted

that the approach presented here can readily be incorporated into other numerical schemes, such as wave

propagation algorithms [19]. The CT algorithms described here can also be applied to integration algo-

rithms based upon spatial reconstruction to the grid cell corners as well [1]. While this might seem surpris-
ing following this presentation, note that the factors (dx,dy) cancel in the ðEa

z ;E
�
z ;E

c
zÞ CT algorithms. For

such integration algorithms, the cell center value Ez;i;j should be replaced with the value of Ez calculated in

the reconstructed fluid state at the grid cell corner, e.g. qi+1/2,j+1/2. With this choice, the CT algorithms pre-

sented here will reduce to the base integration algorithms for plane-parallel, grid-aligned flows.

We note that another CT algorithm with the properties that it reduces to the base integration algorithm

for plane-parallel, grid-aligned flows has recently been presented and tested elsewhere [23]. In particular, the

authors of that paper present a general framework for combining CT and Godunov-type schemes and two

specific implementations for their positive and central-type schemes. A direct comparison between their ap-
proach and ours is somewhat complex in the general case. In the specific case of a first order Godunov

scheme, one can show (using Eqs. (41)–(47) in [23]) that their CT algorithm is identical to the E�
z CT algo-

rithm constructed here, although this is not immediately obvious from the description of their framework.

For the more complex CT algorithms developed in our paper, it is likely that they too can be cast in the

framework described by Londrillo and Del Zanna [23], although we have not attempted to do so.

3.3. First order CT Godunov tests

The integration algorithm utilized in this section is easily assembled from the elements described in the

preceding sections. Starting at time tn we calculate the x- and y-interface states as described in Section 3.1

using the PPM algorithm. Next, we use an approximate Riemann solver to calculate a flux at each grid cell

interface. In the tests presented here we use a Roe linearization [5]. Finally, we apply one of the three

ðEa
z ;E

�
z ;E

c
zÞ CT algorithms. The resulting integration algorithm is first order accurate and subject to a

restrictive CFL stability limit. In the tests presented in this section we use a time step
dt ¼ 0:4min
dx

jkmax
x j ;

dy
jkmax

y j

 !
; ð51Þ
where kmax
x;y indicates the fastest wave mode speed in the x- or y-direction.

3.3.1. Field loop advection

The first problem we consider is the advection of a weak magnetic field loop. The computational domain

extends from �1 6 x 6 1, and �0.5 6 y 6 0.5, is resolved on a 2N · N grid and has periodic boundary

conditions on both x- and y-boundaries. For the tests presented in this section we take N = 64. The mass

density q = 1 and the gas pressure P = 1. The velocity components vx = v0 cos(h), vy = v0 sin(h), vz = 0 where

cosðhÞ ¼ 2=
ffiffiffi
5

p
and sinðhÞ ¼ 1=

ffiffiffi
5

p
. In the diffusion tests we set v0 = 0 while in the advection tests we set

v0 ¼
ffiffiffi
5

p
so that by t = 1 the field loop will have been advected around the grid one complete orbit along
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the grid diagonal. The z-component of the magnetic field Bz = 0 while the in plane components Bx and By

are initialized from the z-component of the magnetic vector potential where
Fig. 1.

Ea
z (to
Az �
A0ðR� rÞ for r 6 R;

0 for r > R;

�
ð52Þ
where A0 = 10�3, R = 0.3 and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Thus for r 6 R, b = 2P/B2 = 2 · 106 and the magnetic field is

essentially a passive scalar.

In the first test we consider the diffusion of the field loop. In Fig. 1, we compare gray-scale images of the

magnetic pressure ðB2
x þ B2

yÞ at t = 0 to the evolved results at t = 2 using the three ðEa
z ;E

�
z ;E

c
zÞ CT algo-

rithms. Clearly, the Ea
z CT algorithm leads to an unacceptable amount of diffusion compared to the other

two, as evidenced by the emergence of a hole at the center caused by reconnection. The ðE�
z ;E

c
zÞ CT algo-

rithms lead to essentially identical results and a very small amount of diffusion. Apparently the additional

dissipation included in the Ea
z CT algorithm is not necessary for stability in this test.

Next, we consider the advection of the magnetic field loop. Unlike in the stationary field loop test, here

the evolved results appear quite similar for the Ea
z and Ec

z CT algorithms. In Fig. 2, we present gray-scale

images of the magnetic pressure at t = 0.19 for the three ðEa
z ;E

�
z ;E

c
zÞ CT algorithms. At this time, the

Ea
z and Ec

z CT algorithms give quite similar results. In contrast, the E�
z CT algorithm appears to have insuf-

ficient dissipation leading to an oscillatory solution. These observations are consistent with the comments in
Section 3.2.2 regarding the upwinding of the gradients of Ez at the interfaces. In Fig. 3, we present

gray-scale images of the magnetic pressure at t = 2 for the three ðEa
z ;E

�
z ;E

c
zÞ CT algorithms. By this time

the oscillations present using the E�
z CT algorithm have come to dominate the solution. The results from

the Ea
z and Ec

z CT algorithms continue to remain quite similar, implying that the dissipation of the first

order scheme is comparable to the dissipation in the Ea
z CT algorithm. Note also the similarity to the mag-

netic pressure image in Fig. 1 for the Ea
z CT algorithm.

From the results of these tests we are led to conclude that of the three algorithms, the Ec
z CT algorithm is

preferable. The Ea
z CT algorithm leads to stable, yet diffusive results for stationary problems. The E�

z CT
algorithm appears to have insufficient dissipation for advection problems leading to oscillatory results.

One might naturally wonder, however, if these results are biased to favor the Ec
z CT algorithm by design.
Gray-scale images of the magnetic pressure ðB2
x þ B2

yÞ at t = 0 (top left) and at t = 2 for a stationary medium (v0 = 0) using the

p right), the E�
z (bottom left) and the Ec

z (bottom right) CT algorithm.



Fig. 2. Gray-scale images of the magnetic pressure ðB2
x þ B2

yÞ at t = 0.19 for an advected field loop ðv0 ¼
ffiffiffi
5

p
Þ using the Ea

z (top left), E�
z

(top right) and Ec
z (bottom) CT algorithm.
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In the following section, we present additional tests of these CT algorithms where wave modes other than

the contact mode play an important role in the solution. We note in passing that the source terms described

in Section 3.1 are absolutely essential to obtain the results presented here. If they had been omitted, the field

loop disintegrates in oscillations before completing a fraction of an orbital period.

3.3.2. Circularly polarized Alfvén wave

In a recent paper Tóth [32] described a test problem involving the evolution of traveling and standing

circularly polarized Alfvén waves in a periodic domain. This test problem is interesting from the point

of view that the initial conditions are nonlinear solutions to the equations of ideal MHD. Unfortunately,
Fig. 3. Gray-scale images of the magnetic pressure ðB2
x þ B2

yÞ at t = 2 for an advected field loop ðv0 ¼
ffiffiffi
5

p
Þ using the Ea

z (top left), E�
z

(top right) and Ec
z (bottom) CT algorithm.
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their efficacy as a discriminating test for multidimensional MHD codes has been hindered slightly [23,25] by

the fact that they are susceptible to a parametric instability [17,13]. Nevertheless, we have found this to be a

useful test and find no indication of instability for the parameters adopted here.

The initial conditions we utilize here are slightly different than in the original description [32]. The com-

putational domain extends from 0 6 x 6
ffiffiffi
5

p
; and 0 6 y 6

ffiffiffi
5

p
=2 is resolved on a 2N · N grid and has peri-

odic boundary conditions on both x- and y-boundaries. For the tests presented in this section we take

N = 8. The Alfvén wave propagates at an angle h = tan�1(2) 	 63.4� with respect to the x-axis and has a

wavelength k = 1. The mass density q = 1 and the gas pressure P = 0.1. The velocity and magnetic field

components are most easily described in a rotated coordinate system
Fig. 4.

resolu
x1 ¼ x cos hþ y sin h; ð53Þ

x2 ¼ �x sin hþ y cos h; ð54Þ

x3 ¼ z ð55Þ

such that the Alfvén wave propagates along the x1 axis. The magnetic field components B1 = 1, B2 = 0.1

sin(2px1), and B3 = 0.1 cos(2px1). The velocity components v1 = (0,1) for traveling or standing Alfvén

waves, respectively, v2 = 0.1 sin(2px1), and v3 = 0.1 cos(2px1). With this set of initial conditions and
v1 = 0 the Alfvén wave will travel a distance of one wavelength k in a time t = 1.

To better illustrate the geometry of this problem, a high resolution image of the out of plane component

of the magnetic field, Bz is presented in Fig. 4. Also included in this figure is an image of Bz for the reso-

lution tested (N = 8) in order to emphasize that the coarsest resolution for this wave is in the y-direction

(with only eight grid points per wavelength), and that there are essentially two complete wavelengths across

the grid diagonal. We have found that low resolution tests such as presented below are much more infor-

mative, since differences between algorithms are generally largest in this case. Note that, just as in the field

loop problem, the in-plane components of the magnetic field (Bx,By) are initialized via the z-component of
the appropriate magnetic vector potential.

In Tóth�s analysis [32] he found that the errors in the solution were dominated by errors in the transverse

magnetic field B2 and velocity v2 in our notation. He presented line plots of B2 versus x as a function of

resolution and numerical scheme. In Fig. 5, we present analogous line plots of B2 versus x1 for the case

of a standing and traveling waves including the initial conditions at t = 0 and the solutions at t = 5 for

the three CT algorithms under study. It is worth noting that in these plots we have calculated B2 using the cell

center magnetic fields and have included the data for every grid cell in the calculation. Owing to the angle of

the wave with respect to the grid, there are many data points which fall on a single x1 position. The lack of
scatter in the data shows that the Alfvén wave retains its planar structure extremely well for the duration

of the calculation.
Plot of Bz at the initial time for the circularly polarized Alfvén wave problem at high resolution, N = 128, (left) and at the

tion plotted in Fig. 5 (right).
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Fig. 5. Plot of B2 versus x1 for the standing (left) and traveling (right) circularly polarized Alfvén wave problem at t = 0 and t = 5 for

the three ðEa
z ;E

�
z ;E

c
zÞ CT algorithms.
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Comparing the plots of B2 versus x1 for the three CT algorithms, we generally find that the E�
z or Ec

z CT

algorithm give nearly identical results, while the Ea
z CT algorithm is more dissipative. In the case of the

standing wave solution, the dissipation rate in the Ea
z CT algorithm is approximately twice that of the other

two. In the traveling wave case, the difference in the dissipation rate is much less indicating that the dissi-

pation in the first order integration algorithm is comparable.
From these tests, and many additional tests not included here, we conclude that the Ec

z CT algorithm has

the best dissipation properties. The Ea
z CT algorithm gives stable, yet diffusive results while the E�

z CT algo-

rithm appears to have insufficient dissipation, leading to oscillatory results for advection problems. These

observations suggest that the Ea
z CT algorithm with a set equal to some estimate of the magnitude of the

local gas velocity could also lead to a non-oscillatory CT algorithm. This idea is however untested, nor is it

clear that it would result in an algorithm which is superior to the Ec
z CT algorithm. For the remainder of

this paper we will use the Ec
z CT algorithm in test problems.
4. Second order CTU + CT Godunov scheme

The CTU method was developed by Colella as an unsplit, two-dimensional sequel to the PPM of Colella

and Woodward for Euler�s equations. The algorithm is second order accurate and degenerates to the base

PPM algorithm for plane-parallel, grid-aligned flows. Formally, the algorithm can be described in just a few

steps.

First, one calculates left and right interface states at each grid cell face using the one-dimensional algo-
rithm from the base PPM scheme. Using the notation adopted in Section 3.1, let these be denoted by

ðqL�iþ1=2;j; q
R�
iþ1=2;j; q

L�
i;jþ1=2; q

R�
i;jþ1=2Þ. For MHD, the PPM interpolation used to construct these states must in-

clude all the multidimensional terms identified in Section 3.1. At each interface one solves the Riemann

problem associated with these interface states and computes the fluxes ðF �
x;iþ1=2;j; F

�
y;i;jþ1=2Þ. Next, one

updates the interface states to the 1/2 time step
qLiþ1=2;j ¼ qL�iþ1=2;j �
1

2

dt
dy

F �
y;i;jþ1=2 � F �

y;i;j�1=2

� �
; ð56Þ

qRiþ1=2;j ¼ qR�
iþ1=2;j �

1

2

dt
dy

F �
y;iþ1;jþ1=2 � F �

y;iþ1;j�1=2

� �
; ð57Þ
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qLi;jþ1=2 ¼ qL�i;jþ1=2 �
1

2

dt
dx

F �
x;iþ1=2;j � F �

x;i�1=2;j

� �
; ð58Þ

qRi;jþ1=2 ¼ qR�
i;jþ1=2 �

1

2

dt
dx

F �
x;iþ1=2;jþ1 � F �

x;i�1=2;jþ1

� �
: ð59Þ
Solving the Riemann problem associated with the four updated interface states ðqL;Riþ1=2;j; q
L;R
i;jþ1=2Þ one obtains

second order accurate fluxes which can be used to update qi,j via the standard finite volume integration rela-

tion, Eq. (9).

Unfortunately, the CTU method as just described is incomplete for MHD when using constrained trans-

port. One reason is that Eqs. (56)–(59) fail to preserve the $ Æ B = 0 condition. The marriage of CTU with

CT for MHD requires a modification of Eqs. (56)–(59) for updating the interface states, and an additional

CT integration step for updating qni;j from time tn to tn + 1.

4.1. Updating the interface states

There are two modifications to the CTU method required for MHD using CT. The first modification,

required by constrained transport, is that the fluxes ðF �
x;iþ1=2;j; F

�
y;i;jþ1=2Þ must be integrated from face center,

to the grid cell corner. Hence from the interface centered flux F �
x;iþ1=2;j we obtain two corner centered fluxes

ðF L�
x;iþ1=2;jþ1=2; F

R�
x;iþ1=2;j�1=2Þ where the superscript L,R indicates that the fluxes have been integrated from face

center to the grid cell corner from either the left (�y) or right (+y) side of the grid cell corner. The labeling
of the y-fluxes ðF L�

y;iþ1=2;jþ1=2; F
R�
y;i�1=2;jþ1=2Þ obtained from F �

y;i;jþ1=2 follows an analogous convention. The sec-

ond modification, originating from differences in the form of the equations of ideal MHD when written in

primitive, or conservative variables, is the addition of source terms. The modified form of the update rela-

tions in Eqs. (56)–(59) for advancing the interface states to the 1/2 time step can be formally written as
qLiþ1=2;j ¼ qL�iþ1=2;j �
1

2

dt
dy

F L�
y;iþ1=2;jþ1=2 � F L�

y;iþ1=2;j�1=2

� �
þ dt

2
Sx;i;j; ð60Þ

qRiþ1=2;j ¼ qR�
iþ1=2;j �

1

2

dt
dy

F R�
y;iþ1=2;jþ1=2 � F R�

y;iþ1=2;j�1=2

� �
þ dt

2
Sx;iþ1;j; ð61Þ

qLi;jþ1=2 ¼ qL�i;jþ1=2 �
1

2

dt
dx

F L�
x;iþ1=2;jþ1=2 � F L�

x;i�1=2;jþ1=2

� �
þ dt

2
Sy;i;j; ð62Þ

qRi;jþ1=2 ¼ qR�
i;jþ1=2 �

1

2

dt
dx

F R�
x;iþ1=2;jþ1=2 � F R�

x;i�1=2;jþ1=2

� �
þ dt

2
Sy;i;jþ1: ð63Þ
The procedure for integrating the fluxes from face center to grid cell corner, and the need for the source

terms will now be described in turn.

4.1.1. Integrating the fluxes to the grid cell corner

Recall that fxðByÞ ¼ �Ez and f yðBxÞ ¼ Ez and let êBx and êBy denote the unit vectors for the Bx and By

components of the flux vector. Furthermore, let E�
z;i;jþ1=2 ¼ êBx � F �

y;i;jþ1=2 and E�
z;iþ1=2;j ¼ �êBy � F �

x;iþ1=2;j. This

allows us to define
F L�
y;iþ1=2;jþ1=2 ¼ F �

y;i;jþ1=2 þ ðE�
z;iþ1=2;jþ1=2 � E�

z;i;jþ1=2ÞêBx ; ð64Þ

F R�
y;iþ1=2;jþ1=2 ¼ F �

y;iþ1;jþ1=2 þ ðE�
z;iþ1=2;jþ1=2 � E�

z;iþ1;jþ1=2ÞêBx ; ð65Þ

F L�
x;iþ1=2;jþ1=2 ¼ F �

x;iþ1=2;j � ðE�
z;iþ1=2;jþ1=2 � E�

z;iþ1=2;jÞêBy ; ð66Þ
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F R�
x;iþ1=2;jþ1=2 ¼ F �

x;iþ1=2;jþ1 � ðE�
z;iþ1=2;jþ1=2 � E�

z;iþ1=2;jþ1ÞêBy : ð67Þ
From a practical point of view, integrating the fluxes from face center to grid cell corner in this fashion can

be thought of as simply stating that the normal components of the magnetic field at grid cell interfaces is

advanced to time tn + 1/2 via a CT integral. Namely,
Bnþ1=2
x;i�1=2;j ¼ Bn

x;i�1=2;j þ
1

2

dt
dy

E�
z;i�1=2;j�1=2 � E�

z;i�1=2;jþ1=2

� �
: ð68Þ

Bnþ1=2
y;i;j�1=2 ¼ Bn

y;i;j�1=2 �
1

2

dt
dx

E�
z;i�1=2;j�1=2 � E�

z;iþ1=2;j�1=2

� �
: ð69Þ
The last part of this integration procedure which requires description is the CT algorithm used to calculate

the corner centered emfE�
z;iþ1=2;jþ1=2. To accomplish this, note that the fluxes ðF �

x;iþ1=2;j; F
�
y;i;jþ1=2Þ are equivalent

to the fluxes used in the single step integration algorithm tested in Section 3.3. As such, the calculation of the

corner centered emf E�
z;iþ1=2;jþ1=2 may be accomplished with any of the ðEa

z ;E
�
z ;E

c
zÞCT algorithms described in

Section 3.2. For the tests problems presented in the following sections we will use the Ec
z CT algorithm. We

note that following this procedure, the magnetic fields satisfy the $ Æ B = 0 condition at time tn + 1/2.

4.1.2. Interface state MHD source terms

The source terms present in Eqs. (60)–(63) follow from the recognition that if they are set to zero, the

updated interface states are not formally advanced by dt/2 for MHD. The basic reason for this discrepancy

lies in the fact that the interface states as described in Section 3.1 (and typically implemented in PPM) are

calculated in primitive variables. As a result,
qL�iþ1=2;j 6¼ qðxi þ dx=2; yjÞ �
dt
2

ofx
ox

ð70Þ
and similarly for the other interface states. To correct this situation, we define
Sx;i;j �

0

Bn
x;i;j

Bn
y;i;j

Bn
z;i;j

0

0

vnz;i;j
Bn
z;i;jv

n
z;i;j

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

Bn
x;iþ1=2;j � Bn

x;i�1=2;j

dx

� �
ð71Þ
and
Sy;i;j �

0

Bn
x;i;j

Bn
y;i;j

Bn
z;i;j

0

0

vnz;i;j
Bn
z;i;jv

n
z;i;j

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

Bn
y;i;jþ1=2 � Bn

y;i;j�1=2

dy

� �
: ð72Þ
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With this choice, the interface states as updated by Eqs. (60)–(63) include all of the necessary terms so as to

be advanced to time tn + 1/2.

Note that the choice to include the term vz(oBx/ox) for Bz (and the associated energy source term) at the

x-interfaces in this step, rather than including it when calculating the interface states as described in Section

3.1 has a very important consequence; it prevents an erroneous field growth of Bz in certain circumstances.
To elucidate this situation, consider a magnetic field loop in the (x,y)-plane advected with a uniform v ¼ vzk̂
and set Bz = 0 initially. With the exception of extrema, oBx/ox and oBy/oy are non-zero throughout the field

loop. However, since vz is uniform the magnetic field Bz should remain equal to zero. If the term vzoBx/ ox is

included when calculating the x-interface states in Section 3.1 they would contain a non-zero Bz. Owing to

the coherent structure of the in-plane field loop, the the values of Bz in the interface states will also have a

coherent structure. Upon updating the interface states with the transverse flux gradients, the growth of Bz is

diminished, however it is not canceled identically. The net result is an unphysical growth of a coherent Bz

which eventually influences the in-plane dynamics. The choice of source terms described in Section 3.1 and
this section maintains Bz to the level of roundoff error with an incoherent structure. Hence, the algorithm

presented here accurately captures the balance of the terms proportional to oBx/ox and oBy /oy, as de-

scribed in Section 3.1, in both the predictor and corrector steps for calculating the interface state values

of Bz.

4.2. The constrained transport update algorithm

After having updated the interface states to time tn + 1/2 via Eqs. (60)–(63), the interface flux calcula-
tion is repeated giving rise to the second order accurate fluxes ðF nþ1=2

x;iþ1=2;j; F
nþ1=2
y;i;jþ1=2Þ. In the CTU algorithm,

this set of fluxes is used to evolve qni;j to time tn + 1. However, in order to evolve the magnetic fields via

constrained transport, we must extend the CT algorithms described in Section 3.2. Requiring that the

algorithm reduce to the base integration algorithm for plane-parallel, grid-aligned flows we find that

we simply need to advance the electric field gradient calculation to the half time step, i.e. Eq. (45) is re-

placed with
oEz

ox

� �nþ1=2

iþ1=4;j

¼ 2

dx
E

nþ1=2
z;iþ1=2;j � E

nþ1=2
z;i;j

� �
: ð73Þ
The electric field E
nþ1=2
z;i;j is the cell center value advanced by dt/2, that is
E
nþ1=2
z;i;j ¼ vnþ1=2

y;i;j Bnþ1=2
x;i;j � vnþ1=2

x;i;j Bnþ1=2
y;i;j ; ð74Þ
where to be consistent with the integration scheme, the cell center magnetic fields are given by
Bnþ1=2
x;i;j ¼ 1

2
Bnþ1=2
x;i�1=2;j þ Bnþ1=2

x;iþ1=2;j

� �
; ð75Þ

Bnþ1=2
y;i;j ¼ 1

2
Bnþ1=2
y;i;j�1=2 þ Bnþ1=2

y;i;jþ1=2

� �
; ð76Þ
where the field components on the right-hand side of these equations are equal to the normal components

of the magnetic field in the interface states ðqL;Ri�1=2;j; q
L;R
i;j�1=2Þ. The density, x- and y-momenta needed to com-

pute the velocity components in Eq. (74) are advanced by dt/2 using
qnþ1=2
i;j ¼ qni;j þ

1

2

dt
dx

F �
x;i�1=2;j � F �

x;iþ1=2;j

� �
þ 1

2

dt
dy

F �
y;i;j�1=2 � F �

y;i;jþ1=2

� �
; ð77Þ
where the fluxes are those calculated in the first step of the CTU algorithm.
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4.3. Summary

The following steps summarize the CTU + CT algorithm for MHD:

(1) Calculate the x- and y-interface states ðqL�iþ1=2;j; q
R�
iþ1=2;j; q

L�
i;jþ1=2; q

R�
i;jþ1=2Þ using the PPM algorithm, and the

multidimensional source terms as described by Eqs. (30)–(32) in Section 3.1.

(2) Calculate the x- and y-interface fluxes ðF �
x;iþ1=2;j; F

�
y;i;jþ1=2Þ associated with the interface states

ðqL�;R�iþ1=2;j; q
L�;R�
i;jþ1=2Þ via a Riemann solver.

(3) Using the Ec
z CT algorithm described in Eqs. (41) and (50) integrate the face centered fluxes to the grid

cell corner as described in Section 4.1.1.

(4) Compute the the four updated interface states ðqL;Riþ1=2;j; q
L;R
i;jþ1=2Þ via Eqs. (60)–(63) with the source terms

detailed in Section 4.1.2.

(5) Compute the x- and y-interface fluxes ðF nþ1=2
x;iþ1=2;j; F

nþ1=2
y;i;jþ1=2Þ associated with the interface states

ðqL;Riþ1=2;j; q
L;R
i;jþ1=2Þ via a Riemann solver.

(6) Compute the grid cell corner centered electric field E
nþ1=2

z;iþ1=2;jþ1=2 using the Ec
z CT algorithm described in

Eqs. (41) and (50) advanced to time tn+1/2 as described in Section 4.2.

(7) Advance the surface averaged normal components of the magnetic field from time tn to tn + 1 using Eqs.

(14) and (15).

(8) Advance the remaining volume averaged conserved quantities from time tn to tn + 1 using Eq. (9).

This completes the description of the algorithm. It is second order accurate, unsplit, and preserves the
$ Æ B = 0 constraint throughout the time step. In the following section we apply this CTU + CT scheme

to a variety of test problems.
5. Tests

In this section, we present results obtained with the CTU + CT integration algorithm just described.

Throughout these tests we use the Ec
z CT algorithm.

5.1. Field loop advection

The advection of a magnetic field loop discussed in Section 3.3.1 was instructive for assessing the dissi-

pation in the different CT algorithms. In this subsection, we present the results obtained for this problem

with the second-order CTU + CT algorithm. The grid resolution and initial conditions are equivalent to

those used in Section 3.3.1.

In Fig. 6, we present gray-scale images of B2 at times t = 0 and t = 2. Comparing these figures we find
that the majority of the field dissipation has occurred at the center and boundaries of the field loop, where
Fig. 6. Gray-scale images of the magnetic pressure ðB2
x þ B2

yÞ at t = 0 (left) and t = 2 (right) using the CTU + CT integration algorithm.
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the current density is initially singular. A more quantitative measure of the magnetic field dissipation rate is

given by the time evolution of the volume average of B2 as shown in Fig. 7. We find that the measured val-

ues (denoted by symbols) is well described by a power law (solid line) of the form B2 = A(1 � (t/s)a) with
A = 3.463 · 10�8, s = 10.614 · 103 and a = 0.2914.

Another important indicator of the properties of the integration algorithm is the geometry of the mag-
netic field lines. Note that since the CT method evolves the interface magnetic flux (preserving $ Æ B = 0)

one may readily integrate to find the z-component of the magnetic vector potential. The magnetic field lines

presented in Fig. 8 are obtained by contouring Az. The same values of Az are used for the contours in both

the t = 0 and the t = 2 images. By t = 2 the inner most field line has dissipated. It is quite pleasing, however,

to note that the CTU + CT algorithm preserves the circular shape of the magnetic field lines, even at this

low resolution.

5.2. Circularly polarized Alfvén wave

The test problem involving the propagation of circularly polarized Alfvén waves at an oblique angle to

the grid was described in Section 3.3.2. In this subsection, we present a resolution study for both standing

and traveling Alfvén waves. The initial conditions are equivalent to those used in Section 3.3.2 only with

N = {4,8,16,32}.

As a diagnostic of the solution accuracy, we plot the in-plane component of the magnetic field, B2, per-

pendicular to the wave propagation direction, x1, in Fig. 9. These plots are constructed using the cell center

components of the magnetic field and each grid cell is included in the plots. Hence, the lack of scatter dem-
onstrates that the solutions retain their planar symmetry quite well. Fig. 9 includes the solutions at time
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Fig. 7. Plot of the volume averaged magnetic energy density B2 as a function of time. The solid line is a power law curve fit to the data

points denoted by the symbols.

Fig. 8. Magnetic field lines at t = 0 (left) and t = 2 (right) using the CTU + CT integration algorithm.
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Fig. 9. Plot of B2 versus x1 at t = 5 for the standing (left) and traveling (right) circularly polarized Alfvén wave problem. For

comparison, the initial conditions at t = 0 for the N = 64 case is also included.
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t = 5 with N = {4,8,16,32} for both standing and traveling waves. For comparison, we also include the ini-

tial conditions for the N = 64 case. We find that these results compare well against other published calcu-

lations [25,32] and we find no indication of the parametric instability for the parameters adopted here.

5.3. Rotated shock tube problem

The solution to the one-dimensional Riemann problem has long been used as a test of numerical algo-

rithms [30,21]. Solving the same problem in a two-dimensional domain with the initially planar discontinu-

ity rotated by some angle with respect the the grid can also be a robust test of the integration algorithm. In

addition to the usual questions, one is also interested in how well the planar symmetry is preserved for flows

which are oblique to the grid.

For MHD this implies a particularly stringent condition on the component of the magnetic field in the

direction of the initial discontinuity normal. Using the coordinate transformations in Eqs. (53)–(55), let the

initial discontinuity lie in the plane x1 = constant. Then for MHD, the solution to the one-dimensional Rie-
mann problem should have B1 = constant, which requires a balance between the x- and y-gradients of Ez

such that oEz=ox2 ¼ 0. Tóth [32] has recently shown that in some cases, schemes which do not preserve the

$ Æ B = 0 condition can result in a solution in which B1 contains a jump across a shock; see also [16].

In the trivial case, rotated shock tube problems are initialized with the shock tube discontinuity oriented

at a 45 degree angle with respect to the grid, i.e. with a coordinate rotation angle h = tan�1(dx/dy). Exam-

ples of test calculations performed using this configuration can be found in [11,16,28]. We have run a vari-

ety of shock tube problems with this configuration (with both dx = dy and dx 6¼ dy) and find that in all of

our tests, the parallel component of the magnetic field, B1, remains equal to a constant with variations
which are of the order of roundoff error. We assert that this is a result of the symmetry of the initial con-

ditions with respect to the grid.

A non-trivial configuration with a coordinate rotation angle of h = tan�1(2) 	 63.4� and dx = dy was

recently suggested by Tóth [32] and has been adopted elsewhere [9,23] as well. This problem is more chal-

lenging because at the discrete, grid-scale level the initial conditions contain variations along the plane of

the initial shock tube discontinuity. Moreover, the symmetry in this configuration is such that qi,j = qi + 2,j�1

which is outside of the integration stencil for most integration algorithms. This is especially true in the

neighborhood of shocks where most integration algorithms drop to first order. Typically, it is in the neigh-
borhood of shocks where one find oscillations, or in some cases even jumps, in B1.
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We choose to simulate rotated shock tube problems on a grid of Nx · Ny grid cells with dx = dy and the

shock tube discontinuity oriented along the grid diagonal. Let C equal the greatest common divisor of

(Nx,Ny) and define rx ” Nx/C and ry ” Ny/C. With this configuration, the coordinate rotation angle

h = tan�1(rx/ry) and the symmetry is such that qi;j ¼ qiþrx;j�ry . Note that this computational grid can also

be described as containing C · C ‘‘macro-cells’’ each of which is rx · ry grid cells in size. We have run a
variety of shock tube problems with (rx,ry) = (2,1), (3,2), (5,4), etc. and in all cases find results which are

mutually consistent.

In the interest of presenting solutions which can be compared to previously published results [9,23,32] we

will now focus on the (rx,ry) = (2,1) case with Nx = 256 and Ny = 128. The particular problem studied has a

left state given by V L ¼ ð1; 10; 0; 0; 5=
ffiffiffiffiffiffi
4p

p
; 5=

ffiffiffiffiffiffi
4p

p
; 0; 20Þ and a right state given by V R ¼

ð1;�10; 0; 0; 5=
ffiffiffiffiffiffi
4p

p
; 5=

ffiffiffiffiffiffi
4p

p
; 0; 1Þ where V = (q,v1, v2, v3, B1, B2, B3, P). Among other places, the one-dimen-

sional solution to this Riemann problem can be found in Fig. 1a of [27].

In Fig. 10, we present line plots of the parallel component of the magnetic field B1 versus the parallel
coordinate x1. These line plots include every point in the computational domain, hence the lack of scatter

indicates that the solution retains the planar structure quite well. The first line plot, labeled ‘‘grid cell’’, is

constructed using the cell center magnetic field components. We find oscillations in B1 which are roughly

10% of B1, with the largest oscillations occurring at the fast-mode shocks and weaker oscillations at the

left and right propagating slow-mode rarefaction and shock, respectively. We note that the Ea
z CT

algorithm does not reduce these oscillations further when compared to the E�
z CT algorithm. Hence

the oscillations in B1 are not a result of insufficient dissipation in the CT algorithm. The second line plot,

labeled ‘‘macro-cell’’, is constructed by first conservatively averaging the solution onto a grid of 128 · 128
‘‘macro-cells’’ before computing the macro-cell center component of B1. The variations in B1 when aver-

aged onto a macro-cell are of the order of roundoff error. Note that we obtain the same result for other

rotation angles, e.g. with (rx,ry) = (3,2), (5,4), etc. We conclude that the oscillations in B1 versus x1 are a

simple consequence of the fact that on the scale of grid cells, the discretized solution contains variations

in the x2-direction. Upon averaging the solution onto the macro-cells, this variation is eliminated, and we

recover the condition B1 = a constant. Note that this also suggests that if one wishes to eliminate the
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Fig. 10. Plot of B1 versus x1 for the (rx,ry) = (2,1) case at time t = 0.08 using the grid cell centered B and the macro-cell centered B. The

data for the macro-cell centered B have been offset vertically by 0.01 to for clarity.
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oscillations in B1 it would require a viscosity with a stencil whose size is at least as large as the macro-

cell.

The recovery of B1 = a constant upon averaging the solution onto a grid of macro-cells is clearly con-

sistent with magnetic flux conservation and plane parallel symmetry, yet it does not appear to be a trivial

result. For example, it is clear that schemes which generate a jump in B1 [16,32] cannot recover this
result.

5.4. Linear wave convergence

In this subsection, we show that the CTU + CT integration algorithm converges with second order accu-

racy for linear amplitude waves. The computational domain extends from 0 6 x 6
2=

ffiffiffi
5

p
; and 0 6 y 6 1=

ffiffiffi
5

p
, is resolved on a 2N · N grid and has periodic boundary conditions on both

x- and y-boundaries. The linear wave propagates at an angle h = tan�1(2) 	 63.4� with respect to the x-axis
and has a wavelength k = 2/5. Using the coordinate rotation described by Eqs. (53)–(55), the initial con-

served variable state vector is given by
q0 ¼ �qþ eRk cosð2px1Þ; ð78Þ

where �q is the mean background state, e = 10�6 is the wave amplitude, and Rk is the right eigenvector in

conserved variables for wave mode k (calculated in the state �q). In order to enable others to perform the

same tests presented here and compare the results in a quantitative manner, we include the numerical values

for the right eigenvectors in Appendix A. As in previous 2D calculations, the in-plane components of the

magnetic field (Bx,By) are initialized via the z-component of the magnetic vector potential.

The mean background state �q is selected so that the wave speeds are well separated and there are no

inherent symmetries in the magnetic field orientation. It is most convenient to describe it in terms of the
associated primitive variables and in the rotated coordinate system given by Eqs. (53)–(55). The density
�q ¼ 1 and gas pressure �P ¼ 1=c ¼ 3=5. The velocity component parallel to the wave propagation direction,
�v1 ¼ 1 for the entropy mode test and �v1 ¼ 0 for all other wave modes. The transverse velocity components
�v2 ¼ �v3 ¼ 0. The magnetic field components �B1 ¼ 1; �B2 ¼

ffiffiffi
2

p
; and �B3 ¼ 1=2. With this choice, the slow

mode speed cs = 1/2, the Alfvén speed ca = 1, and the fast mode speed cf = 2 in the wave propagation

direction.

The error in the solution is calculated after propagating the wave for a distance equal to 1 wavelength.

Hence, the initial state is evolved for a time t = k/c where c is the speed of the wave mode under consider-
ation. For each component k of the conserved variable vector q we calculate the L1 error with respect to the

initial conditions
dqk ¼
1

2N 2

X
i

X
j

jqni;j;k � q0i;j;kj ð79Þ
by summing over all grid cells (i,j). We use the cell center components of the in-plane magnetic field com-

ponents (Bx,By) in computing this error. In Fig. 11, we plot the norm of this error vector
jdqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

ðdqkÞ
2

r
ð80Þ
for the fast, Alfvén, slow and entropy modes. This plot shows that the solution for each wave mode con-

verges with at least second order accuracy. The order of convergence for each wave mode, obtained by a

power law fit to the errors, is indicated in the legend of Fig. 11. We note in passing that if the interface state

reconstruction algorithm is performed using piecewise linear interpolation, instead of piecewise quadratic,

the error is proportional to N�2 for all wave modes and the amplitude is increased slightly.
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Fig. 11. Linear wave convergence of fast, Alfvén, slow and entropy modes using the CTU + CT integration algorithm. The symbols

denote the calculated L1 error norm. The lines are power law curve fits to the data and the order of convergence for each wave mode is

indicated in the legend.
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5.5. Current sheet

In this subsection, we present a problem which is particularly sensitive to the numerical dissipation and

demonstrates of the robustness of the integration algorithm. The computational domain extends from

0 6 x 6 2, and 0 6 y 6 2, is resolved on an 256 · 256 grid and has periodic boundary conditions on both

x- and y-boundaries. The density q = 1 and the magnetic field components Bx = Bz = 0 and
By ¼
B0 if 0 6 x < 1=2;

�B0 if 1=2 6 x 6 3=2;

B0 if 3=2 < x 6 2;

8><
>: ð81Þ
where B0 = 1. Hence there are initially two current sheets in the computational domain and the character-

istic Alfvén speed ca ¼ B0=
ffiffiffi
q

p ¼ 1. The gas pressure P = 0.1 such that b ¼ 2P=B2
0 ¼ 0:2 and the dynamics

are initially magnetically dominated. The ratio of the Alfvén speed to the sound speed B0=
ffiffiffiffiffiffi
cP

p
	 2:45,

hence magnetically driven dynamics are supersonic. The initial velocity components vx = v0 sin(py) with
v0 = 0.1, vy = vz = 0. For v0/ca 
 1 the ensuing dynamics are well characterized by linear Alfvén waves.

For the values selected here this is approximately true at early times, until magnetic reconnection and non-

linear effects come to influence the dynamics.
One aspect of this problem which is of particular interest is the magnetic reconnection since it is a direct

measure of the numerical resistivity. In Fig. 12, we present the time evolution of themagnetic field lines. From

themagnetic field geometry at time t = 0.5 we see that, as one should expect, the numerical resistivity is a func-

tion of the magnetic field orientation with respect to the grid: magnetic fields dissipate, and reconnect prefer-

entially where the magnetic field orientation is oblique to the grid. Hence, we find the largest change in the

magnetic field structure at the nodal points of the transverse velocity. As reconnection takes place, the mag-

netic energy is converted into thermal energy (on time scales of the integration time step) which in turn drives

both compressional, andAlfvénicwaves. Thesewaves interact seedingmore reconnection events.By time t = 1
a series of magnetic islands have developed along the current sheets. These islands are free to move parallel to



Fig. 12. Time evolution of the magnetic field lines using the CTU + CT integration algorithm. Time increases from left to right and top

to bottom in normal reading order. The contour levels of Az which are plotted is uniform over the sequence of images at times

t = (0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0).
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the local magnetic field direction and by time t = 1.5 some of themagnetic islands have propagated toward the

velocity anti-nodes and merged. This process of island formation, translation, and merging continues until

there are twomagnetic field islands along each current sheet located approximately at the velocity anti-nodes.
This problem is also interesting in that it uses a very simple set of initial conditions to test the ‘‘robust-

ness’’ of the integration algorithm. The nonlinear dynamics which result from this problem lead to strong

compressions and rarefactions. It is important to maintain the divergence-free constraint as the topology of

the field changes during reconnection. By either increasing v0 or decreasing P (and therefore b) the dynam-

ics become increasingly difficult for the integration algorithm to solve. We have found it a very useful test to

discriminate between algorithms.

5.6. MHD blast wave

As our final test problem we consider the explosion of a centrally over pressurized region into a low pres-

sure, low b ambient medium. This problem has been studied by a number of authors [3,22,33] and we have

chosen to use the parameters given by [22]. The computational domain extends from �0.5 6 x 6 0.5 and



Fig. 13. Linearly scaled gray-scale images and the magnetic field lines of the evolved state (time = 0.2) for the MHD blast wave

problem. The density (top left) ranges from 0.192 (white) to 3.31 (black). The gas pressure (top right) ranges from 1.0 (white) to 32.1

(black). The magnetic energy density (bottom left) ranges from 23.5 (white) to 77.7 (black).
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�0.5 6 y 6 0.5. The density q = 1, the velocity v = 0, and the magnetic field components

Bx ¼ By ¼ 10=
ffiffiffi
2

p
and Bz ¼ 0. Within a circle of radius R = 0.125 about the origin the gas pressure

P = 100 and b = 2P/B2 = 2. Outside of this circle, the gas pressure P = 1 and b = 2 · 10�2.

The solution to this problem at time t = 0.2, using a 200 · 200 grid, is presented in Fig. 13. The density

image shows two dense shells of gas which propagate parallel to the magnetic field. The outer surface of

these shells is a slow-mode shock and the inner surface is the contact surface separating the gas initially

inside and outside of the boundary surface. The maximum compression of the gas is 3.3 indicating that

the slow mode shock is quite strong, in agreement with what one might expect from the ratio of the gas

pressures, Pin/Pamb = 100. In the direction orthogonal to the magnetic field, the magnetic pressure is the

dominant player in the dynamics, yet from the field lines we see that there is only a moderate change in
the geometry of the field.

The solution presented in Fig. 13 demonstrates that the algorithm presented in this paper is both stable

and accurate for low-b plasma problems involving strong MHD shock waves. The solutions also preserve

the initial symmetry of the flow exceptionally well despite the orientation of the magnetic field. We find no

indication of grid related artifacts in the solution.

6. Conclusion

In this paper, we have demonstrated that the method of constrained transport can be combined with

finite volume integration algorithms in a self consistent manner. Consistency, however, implies that the
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electric fields used in the CT update step and those used for evolving the volume average magnetic fields are

coupled. This coupling has direct consequences for the stability and accuracy of the integration algorithm.

We have presented a general approach to constructing CT algorithms, constructing and testing three. Each

of these CT algorithms contained the novel property that for planar, grid-aligned flows the solution would

recover the 1D solution obtained with the underlying integration algorithm. These CT algorithms differed
only in their dissipation properties for truly multidimensional flows. Through numerical experiments we

have shown that the Ec
z CT algorithm is well behaved leading to stable, non-oscillatory solutions. We have

also noted how this algorithm can readily be combined with other unsplit integration algorithms such as

central schemes, or wave propagation methods.

We have shown that if the PPM integration algorithm is used for ideal MHD, terms proportional to

oBx/ox and oBy/oy, which in primitive variables are present only in the induction equation, must be

included in the calculation of the ‘‘interface states’’. If these terms are neglected in the calculation of the

interface states, the integration algorithm is oscillatory for the simple case of field loop advection. We also
presented two simple gedanken experiments to demonstrate why this result should be expected. A simple

approach for including these source terms in the calculation of the interface states is adopted and it has

been demonstrated to be accurate and stable for use with both the single step and two step (CTU + CT)

integration algorithm.

Another result of this paper is the extension of the CTU integration algorithm for ideal MHD based

upon the CT integration algorithm. We showed that since the interface states are calculated using primitive

variables, the standard CTU procedure for updating the interface states to the 1/2 time step is missing terms

which are proportional to oBx/ox at x-interfaces and similarly for the y-interface states. These terms must
be included as an additional set of ‘‘source terms’’ so that the interface states are formally advanced to the

1/2 time step. We also described how the CT algorithms developed in this paper can be combined with the

CTU integration algorithm so as to maintain $ Æ B = 0 throughout the integration time step.

The CTU + CT integration algorithm presented in this paper for ideal MHD has been thoroughly tested

and some representative solutions have been included here. This algorithm combines the strong stability

and shock capturing characteristics of Godunov methods with the magnetic flux conservation obtained

via the CT method. The integration algorithm is conservative, uses a single step update algorithm, and

is second order accurate on smooth solutions. These characteristics make it ideally suited for use on either
a statically or adaptively refined mesh. We note also that ‘‘physical’’ source terms such as an external grav-

itational field, or Coriolis terms accounting for a rotating reference frame can be readily incorporated into

this integration algorithm. The resulting algorithm also retains the desirable properties noted above, such as

recovering the 1D solution for plane parallel grid-aligned flows. These details will be described in a later

paper.

Lastly, while the algorithm presented in this paper has focused solely on the two-dimensional case, the

results presented here can be extended to three dimensions. This extension principally involves modifica-

tions to the ‘‘source terms’’ involved in the calculation and update of the interface states with transverse
flux gradients. The actual details of this extension are beyond the scope of this paper and will be presented

elsewhere.
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Appendix A. Linear wave right eigenvectors

In order to enable others to perform the linear wave convergence test presented in Section 5.4 and com-

pare their results in a quantitative manner, we include the numerical values for the right eigenvectors here.

In the rotated coordinate system described by Eqs. (53)–(55) the conserved variable vector
q ¼

q

qv1
qv2
qv3
B1

B2

B3

E

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: ðA:1Þ
The right eigenvectors (labeled according to their propagation velocity) are given by
R�cf ¼
1

6
ffiffiffi
5

p

6
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�4
ffiffiffi
2

p

�2

0

8
ffiffiffi
2

p

4
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0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; R�ca ¼

1

3
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0
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ffiffiffi
2

p
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�1
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ffiffiffi
2

p
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0
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1
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; ðA:2Þ

R�cs ¼
1
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ffiffiffi
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p
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p
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0
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p
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1
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References

[1] D.S. Balsara, Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction, astro-ph/0308249.

[2] D.S. Balsara, J. Kim, An Intercomparison between divergence-cleaning and staggered mesh formulations for numerical

magnetohydrodynamics, astro-ph/0310728.

[3] D.S. Balsara, D.S. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in

magnetohydrodynamic simulations, J. Comput. Phys. 149 (1999) 270.

[4] J.U. Brackbill, D.C. Barnes, The effect of nonzero $ Æ B on the numerical solution of the magnetohydrodynamic equations, J.

Comput. Phys. 35 (1980) 426.



T.A. Gardiner, J.M. Stone / Journal of Computational Physics 205 (2005) 509–539 539
[5] P. Cargo, G. Gallice, Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws,

J. Comput. Phys. 136 (1997) 446.

[6] D.A. Clarke, A consistent method of characteristics for multidimensional magnetohydrodynamics, Astrophys. J. 457 (1996) 291.

[7] P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys. 87 (1990) 171.

[8] P. Colella, P.R. Woodward, The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys. 54 (1984)

174.

[9] R.K. Crockett, P. Colella, R.T. Fisher, R.I. Klein, C.F. McKee, An unsplit, cell-centered Godunov method for ideal MHD, J.

Comput. Phys. 203 (2005) 422.

[10] W. Dai, P.R. Woodward, A high-order Godunov-type scheme for shock interactions in ideal magnetohydrodynamics, SIAM J.

Sci. Comput. 18 (4) (1997) 957.

[11] W. Dai, P.R. Woodward, A simple finite difference scheme for multidimensional magnetohydrodynamical equations, J. Comput.

Phys. 142 (1998) 331.
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